博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
twitter storm源码走读之3--topology提交过程分析
阅读量:6671 次
发布时间:2019-06-25

本文共 27180 字,大约阅读时间需要 90 分钟。

概要

storm cluster可以想像成为一个工厂,nimbus主要负责从外部接收订单和任务分配。除了从外部接单,nimbus还要将这些外部订单转换成为内部工作分配,这个时候nimbus充当了调度室的角色。supervisor作为中层干部,职责就是生产车间的主任,他的日常工作就是时刻等待着调度到给他下达新的工作。作为车间主任,supervisor领到的活是不用自己亲力亲为去作的,他手下有着一班的普通工人。supervisor对这些工人只会喊两句话,开工,收工。注意,讲收工的时候并不意味着worker手上的活已经干完了,只是进入休息状态而已。

topology的提交过程涉及到以下角色。

  • storm client   负责将用户创建的topology提交到nimbus
  • nimbus        通过thrift接口接收用户提交的topology
  • supervisor       根据zk接口上提示的消息下载最新的任务安排,并负责启动worker
  • worker            worker内可以运行task,这些task要么属于bolt类型,要么属于spout类型
  • executor         executor是一个个运行的线程,同一个executor内可以运行同一种类型的task,即一个线程中的task要么全部是bolt类型,要么全部是spout类型

一个worker等同于一个进程,一个executor等同于一个线程,同一个线程中能够运行一或多个tasks。在0.8.0版之前,一个task是对应于一个线程的,在0.8.0版本中引入了executor概念,变化引入之后,task与thread之间的一一对应关系就取消了,同时在zookeeper server中原本存在的tasks-subtree也消失了,有关这个变化,可以参考

 storm client

storm client需要执行下面这句指令将要提交的topology提交给storm cluster 假设jar文件名为storm-starter-0.0.1-snapshot-standalone.jar,启动程序为 storm.starter.ExclamationTopology,给这个topology起的名称为exclamationTopology.

#./storm jar $HOME/working/storm-starter/target/storm-starter-0.0.1-SNAPSHOT-standalone.jar storm.starter.ExclamationTopology exclamationTopology

这么短短的一句话对于storm client来说,究竟意味着什么呢? 源码面前是没有任何秘密可言的,那好打开storm client的源码文件

def jar(jarfile, klass, *args):    """Syntax: [storm jar topology-jar-path class ...]    Runs the main method of class with the specified arguments.     The storm jars and configs in ~/.storm are put on the classpath.     The process is configured so that StormSubmitter     (http://nathanmarz.github.com/storm/doc/backtype/storm/StormSubmitter.html)    will upload the jar at topology-jar-path when the topology is submitted.    """    exec_storm_class(        klass,        jvmtype="-client",        extrajars=[jarfile, USER_CONF_DIR, STORM_DIR + "/bin"],        args=args,        jvmopts=["-Dstorm.jar=" + jarfile])
def exec_storm_class(klass, jvmtype="-server", jvmopts=[],               extrajars=[], args=[], fork=False):    global CONFFILE    all_args = [        "java", jvmtype, get_config_opts(),        "-Dstorm.home=" + STORM_DIR,         "-Djava.library.path=" + confvalue("java.library.path", extrajars),        "-Dstorm.conf.file=" + CONFFILE,        "-cp", get_classpath(extrajars),    ] + jvmopts + [klass] + list(args)    print "Running: " + " ".join(all_args)    if fork:        os.spawnvp(os.P_WAIT, "java", all_args)    else:        os.execvp("java", all_args) # replaces the current process and        never returns

exec_storm_class说白了就是要运行传进来了的WordCountTopology类中main函数,再看看main函数的实现

public static void main(String[] args) throws Exception {    TopologyBuilder builder = new TopologyBuilder();    builder.setSpout("spout", new RandomSentenceSpout(), 5);    builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");    builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));    Config conf = new Config();    conf.setDebug(true);    if (args != null && args.length > 0) {      conf.setNumWorkers(3);      StormSubmitter.submitTopology(args[0], conf, builder.createTopology());    }}

对于storm client侧来说,最主要的函数StormSubmitter露出了真面目,submitTopology才是我们真正要研究的重点。

public static void submitTopology(String name, Map stormConf, StormTopology topology, SubmitOptions opts) throws AlreadyAliveException, InvalidTopologyException {        if(!Utils.isValidConf(stormConf)) {            throw new IllegalArgumentException("Storm conf is not valid. Must be json-serializable");        }        stormConf = new HashMap(stormConf);        stormConf.putAll(Utils.readCommandLineOpts());        Map conf = Utils.readStormConfig();        conf.putAll(stormConf);        try {            String serConf = JSONValue.toJSONString(stormConf);            if(localNimbus!=null) {                LOG.info("Submitting topology " + name + " in local mode");                localNimbus.submitTopology(name, null, serConf, topology);            } else {                NimbusClient client = NimbusClient.getConfiguredClient(conf);                if(topologyNameExists(conf, name)) {                    throw new RuntimeException("Topology with name `"                    + name                     + "` already exists on cluster");                }                submitJar(conf);                try {                    LOG.info("Submitting topology " +  name                     + " in distributed mode with conf " + serConf);                    if(opts!=null) {                        client.getClient().submitTopologyWithOpts(name, submittedJar, serConf, topology, opts);                                        } else {                        // this is for backwards compatibility                        client.getClient().submitTopology(name, submittedJar, serConf, topology);                                                                }                } catch(InvalidTopologyException e) {                    LOG.warn("Topology submission exception", e);                    throw e;                } catch(AlreadyAliveException e) {                    LOG.warn("Topology already alive exception", e);                    throw e;                } finally {                    client.close();                }            }            LOG.info("Finished submitting topology: " +  name);        } catch(TException e) {            throw new RuntimeException(e);        }    }

submitTopology函数其实主要就干两件事,一上传jar文件到storm cluster,另一件事通知storm cluster文件已经上传完毕,你可以执行某某某topology了.

先看上传jar文件对应的函数submitJar,其调用关系如下图所示

再看第二步中的调用关系,图是我用tikz/pgf写的,生成的是pdf格式。

在上述两幅调用关系图中,处于子树位置的函数都曾在storm.thrift中声明,如果此刻已经忘记了的点话,可以翻看一下前面1.3节中有关storm.thrift的描述。client侧的这些函数都是由thrift自动生成的。

由于篇幅和时间的关系,在storm client侧submit topology的时候,非常重要的函数还有TopologyBuilder.java中的源码。

nimbus

storm client侧通过thrift接口向nimbus发送了了jar并且通过预先定义好的submitTopologyWithOpts来处理上传的topology,那么nimbus是如何一步步的进行文件接收并将其任务细化最终下达给supervisor的呢。

submitTopologyWithOpts

一切还是要从thrift说起,supervisor.clj中的service-handler具体实现了thrift定义的Nimbus接口,代码这里就不罗列了,太占篇幅。主要看其是如何实现submitTopologyWithOpts

(^void submitTopologyWithOpts        [this ^String storm-name ^String uploadedJarLocation ^String serializedConf ^StormTopology topology         ^SubmitOptions submitOptions]        (try          (assert (not-nil? submitOptions))          (validate-topology-name! storm-name)          (check-storm-active! nimbus storm-name false)          (.validate ^backtype.storm.nimbus.ITopologyValidator (:validator nimbus)                     storm-name                     (from-json serializedConf)                     topology)          (swap! (:submitted-count nimbus) inc)          (let [storm-id (str storm-name "-" @(:submitted-count nimbus) "-" (current-time-secs))                storm-conf (normalize-conf                            conf                            (-> serializedConf                                from-json                                (assoc STORM-ID storm-id)                              (assoc TOPOLOGY-NAME storm-name))                            topology)                total-storm-conf (merge conf storm-conf)                topology (normalize-topology total-storm-conf topology)                topology (if (total-storm-conf TOPOLOGY-OPTIMIZE)                           (optimize-topology topology)                           topology)                storm-cluster-state (:storm-cluster-state nimbus)]            (system-topology! total-storm-conf topology) ;; this validates the structure of the topology            (log-message "Received topology submission for " storm-name " with conf " storm-conf)            ;; lock protects against multiple topologies being submitted at once and            ;; cleanup thread killing topology in b/w assignment and starting the topology            (locking (:submit-lock nimbus)              (setup-storm-code conf storm-id uploadedJarLocation storm-conf topology)              (.setup-heartbeats! storm-cluster-state storm-id)              (let [thrift-status->kw-status {TopologyInitialStatus/INACTIVE :inactive                                              TopologyInitialStatus/ACTIVE :active}]                (start-storm nimbus storm-name storm-id (thrift-status->kw-status (.get_initial_status submitOptions))))              (mk-assignments nimbus)))          (catch Throwable e            (log-warn-error e "Topology submission exception. (topology name='" storm-name "')")            (throw e))))

storm cluster在zookeeper server上创建的目录结构。目录结构相关的源文件是config.clj.

白话一下上面这个函数的执行逻辑,对上传的topology作必要的检测,包括名字,文件内容及格式,好比你进一家公司上班之前做的体检。这些工作都完成之后进入关键区域,是进入关键区域所以上锁,呵呵。

normalize-topology

(defn all-components [^StormTopology topology]  (apply merge {}         (for [f thrift/STORM-TOPOLOGY-FIELDS]           (.getFieldValue topology f)           )))

一旦列出所有的components,就可以读出这些component的配置信息。

mk-assignments

在这关键区域内执行的重点就是函数mk-assignments,mk-assignment有两个主要任务,第一是计算出有多少task,即有多少个spout,多少个bolt,第二就是在刚才的计算基础上通过调用zookeeper应用接口,写入assignment,以便supervisor感知到有新的任务需要认领。

先说第二点,因为逻辑简单。在mk-assignment中执行如下代码在zookeeper中设定相应的数据以便supervisor能够感知到有新的任务产生

(doseq [[topology-id assignment] new-assignments            :let [existing-assignment (get existing-assignments topology-id)                  topology-details (.getById topologies topology-id)]]      (if (= existing-assignment assignment)        (log-debug "Assignment for " topology-id " hasn't changed")        (do          (log-message "Setting new assignment for topology id " topology-id ": "                   (pr-str assignment))          (.set-assignment! storm-cluster-state topology-id assignment)          )))

调用关系如下图所示

 

而第一点涉及到的计算相对繁杂,需要一一仔细道来。其实第一点中非常重要的课题就是如何进行任务的分发,即scheduling.

也许你已经注意到目录src/clj/backtype/storm/scheduler,或者注意到storm.yaml中与scheduler相关的配置项。那么这个scheduler到底是在什么时候起作用的呢。mk-assignments会间接调用到这么一个名字看起来奇怪异常的函数。compute-new-topology->executor->node+por,也就是在这么很奇怪的函数内,scheduler被调用

_ (.schedule (:scheduler nimbus) topologies cluster)new-scheduler-assignments (.getAssignments cluster);; add more information to convert SchedulerAssignment to Assignmentnew-topology->executor->node+port (compute-topology->executor->node+port new-scheduler-assignments)]

schedule计算出来的assignments保存于Cluster.java中,这也是为什么new-scheduler-assignment要从其中读取数据的缘由所在。有了assignment,就可以计算出相应的node和port,其实就是这个任务应该交由哪个supervisor上的worker来执行。

 storm在zookeeper server上创建的目录结构如下图所示

 

有了这个目录结构,现在要解答的问题是在topology在提交的时候要写哪几个目录?assignments目录下会新创建一个新提交的topology的目录,在这个topology中需要写的数据,其数据结构是什么样子?

 

supervisor

一旦有新的assignment被写入到zookeeper中,supervisor中的回调函数mk-synchronize-supervisor立马被唤醒执行

主要执行逻辑就是读入zookeeper server中新的assignments全集与已经运行与本机上的assignments作比较,区别出哪些是新增的。在sync-processes函数中将运行具体task的worker拉起。

 要想讲清楚topology提交过程中,supervisor需要做哪些动作,最主要的是去理解下面两个函数的处理逻辑。

  • mk-synchronize-supervisor  当在zookeeper server的assignments子目录内容有所变化时,supervisor收到相应的notification, 处理这个notification的回调函数即为mk-synchronize-supervisor,mk-sychronize-supervisor读取所有的assignments即便它不是由自己处理,并将所有assignment的具体信息读出。尔后判断分析出哪些assignment是分配给自己处理的,在这些分配的assignment中,哪些是新增的。知道了新增的assignment之后,从nimbus的相应目录下载jar文件,用户自己的处理逻辑代码并没有上传到zookeeper server而是在nimbus所在的机器硬盘上。
  • sync-processes mk-synchronize-supervisor预处理过完与assignment相关的操作后,将真正启动worker的动作交给event-manager, event-manager运行在另一个独立的线程中,这个线程中进行处理的一个主要函数即sync-processes. sync-processes会将当前运行着的worker全部kill,然后指定新的运行参数,重新拉起worker.
(defn mk-synchronize-supervisor [supervisor sync-processes event-manager processes-event-manager]  (fn this []    (let [conf (:conf supervisor)          storm-cluster-state (:storm-cluster-state supervisor)          ^ISupervisor isupervisor (:isupervisor supervisor)          ^LocalState local-state (:local-state supervisor)          sync-callback (fn [& ignored] (.add event-manager this))          assignments-snapshot (assignments-snapshot storm-cluster-state sync-callback)          storm-code-map (read-storm-code-locations assignments-snapshot)          downloaded-storm-ids (set (read-downloaded-storm-ids conf))          ;;read assignments from zookeeper          all-assignment (read-assignments                           assignments-snapshot                           (:assignment-id supervisor))          new-assignment (->> all-assignment                              (filter-key #(.confirmAssigned isupervisor %)))          ;;task在assignment中          assigned-storm-ids (assigned-storm-ids-from-port-assignments new-assignment)          existing-assignment (.get local-state LS-LOCAL-ASSIGNMENTS)]      (log-debug "Synchronizing supervisor")      (log-debug "Storm code map: " storm-code-map)      (log-debug "Downloaded storm ids: " downloaded-storm-ids)      (log-debug "All assignment: " all-assignment)      (log-debug "New assignment: " new-assignment)            ;; download code first      ;; This might take awhile      ;;   - should this be done separately from usual monitoring?      ;; should we only download when topology is assigned to this supervisor?      (doseq [[storm-id master-code-dir] storm-code-map]        (when (and (not (downloaded-storm-ids storm-id))                   (assigned-storm-ids storm-id))          (log-message "Downloading code for storm id "             storm-id             " from "             master-code-dir)          (download-storm-code conf storm-id master-code-dir)          (log-message "Finished downloading code for storm id "             storm-id             " from "             master-code-dir)          ))      (log-debug "Writing new assignment "                 (pr-str new-assignment))      (doseq [p (set/difference (set (keys existing-assignment))                                (set (keys new-assignment)))]        (.killedWorker isupervisor (int p)))      (.assigned isupervisor (keys new-assignment))      (.put local-state            LS-LOCAL-ASSIGNMENTS            new-assignment)      (reset! (:curr-assignment supervisor) new-assignment)      ;; remove any downloaded code that's no longer assigned or active      ;; important that this happens after setting the local assignment so that      ;; synchronize-supervisor doesn't try to launch workers for which the      ;; resources don't exist      (doseq [storm-id downloaded-storm-ids]        (when-not (assigned-storm-ids storm-id)          (log-message "Removing code for storm id "                       storm-id)          (rmr (supervisor-stormdist-root conf storm-id))          ))      (.add processes-event-manager sync-processes)      )))

注意加亮行

assignments-snapshot是去zookeeper server中的assignments子目录读取所有的topology-ids及其内容,会使用zk/get-children及zk/get-data原语。调用关系如下

assignments-snapshot-->assignment-info-->clusterstate/get-data-->zk/get-data

代码下载 (download-storm-code conf storm-id master-code-dir),storm client将代码上传到nimbus,nimbus将其放到自己指定的目录,这个目录结构在nimbus所在机器的文件系统上可以找到。supervisor现在要做的事情就是去将nimbus上的代码下载复制到本地。

 (.add processes-event-manager sync-processes) 添加事件到event-manager,event-manager是一个独立运行的线程,新添加的事件处理函数为sync-processes, sync-processes的主要功能在本节开始处已经描述。

 

(defn sync-processes [supervisor]  (let [conf (:conf supervisor)        ^LocalState local-state (:local-state supervisor)        assigned-executors (defaulted (.get local-state LS-LOCAL-ASSIGNMENTS) {})        now (current-time-secs)        allocated (read-allocated-workers supervisor assigned-executors now)        keepers (filter-val                 (fn [[state _]] (= state :valid))                 allocated)        keep-ports (set (for [[id [_ hb]] keepers] (:port hb)))        reassign-executors (select-keys-pred (complement keep-ports) assigned-executors)        new-worker-ids (into                        {}                        (for [port (keys reassign-executors)]                          [port (uuid)]))        ]    ;; 1. to kill are those in allocated that are dead or disallowed    ;; 2. kill the ones that should be dead    ;;     - read pids, kill -9 and individually remove file    ;;     - rmr heartbeat dir, rmdir pid dir, rmdir id dir (catch exception and log)    ;; 3. of the rest, figure out what assignments aren't yet satisfied    ;; 4. generate new worker ids, write new "approved workers" to LS    ;; 5. create local dir for worker id    ;; 5. launch new workers (give worker-id, port, and supervisor-id)    ;; 6. wait for workers launch      (log-debug "Syncing processes")    (log-debug "Assigned executors: " assigned-executors)    (log-debug "Allocated: " allocated)    (doseq [[id [state heartbeat]] allocated]      (when (not= :valid state)        (log-message         "Shutting down and clearing state for id " id         ". Current supervisor time: " now         ". State: " state         ", Heartbeat: " (pr-str heartbeat))        (shutdown-worker supervisor id)        ))    (doseq [id (vals new-worker-ids)]      (local-mkdirs (worker-pids-root conf id)))    (.put local-state LS-APPROVED-WORKERS          (merge           (select-keys (.get local-state LS-APPROVED-WORKERS)                        (keys keepers))           (zipmap (vals new-worker-ids) (keys new-worker-ids))           ))    (wait-for-workers-launch     conf     (dofor [[port assignment] reassign-executors]       (let [id (new-worker-ids port)]         (log-message "Launching worker with assignment "                      (pr-str assignment)                      " for this supervisor "                      (:supervisor-id supervisor)                      " on port "                      port                      " with id "                      id                      )         (launch-worker supervisor                        (:storm-id assignment)                        port                        id)         id)))    ))

worker

worker是被supervisor通过函数launch-worker带起来的。并没有外部的指令显示的启动或停止worker,当然kill除外, :).

worker的主要任务有

  •  发送心跳消息
  •  接收外部tuple的消息
  •  向外发送tuple消息

这些工作集中在mk-worker指定处理句柄。源码在此处就不一一列出了。

 

executor

executor是通过worker执行mk-executor完成初始化过程。

(defn mk-executor [worker executor-id] (let [executor-data (mk-executor-data worker executor-id)   _ (log-message "Loading executor " (:component-id executor-data) ":" (pr-str executor-id))   task-datas (->> executor-data                   :task-ids                   (map (fn [t] [t (task/mk-task executor-data t)]))                   (into {})                   (HashMap.))   _ (log-message "Loaded executor tasks " (:component-id executor-data) ":" (pr-str executor-id))   report-error-and-die (:report-error-and-die executor-data)   component-id (:component-id executor-data)   ;; starting the batch-transfer->worker ensures that anything publishing to that queue    ;; doesn't block (because it's a single threaded queue and the caching/consumer started   ;; trick isn't thread-safe)   system-threads [(start-batch-transfer->worker-handler! worker executor-data)]   handlers (with-error-reaction report-error-and-die              (mk-threads executor-data task-datas))   threads (concat handlers system-threads)]        (setup-ticks! worker executor-data)    (log-message "Finished loading executor " component-id ":" (pr-str executor-id))    ;; TODO: add method here to get rendered stats... have worker call that when heartbeating    (reify      RunningExecutor      (render-stats [this]        (stats/render-stats! (:stats executor-data)))      (get-executor-id [this]        executor-id )      Shutdownable      (shutdown        [this]        (log-message "Shutting down executor " component-id ":" (pr-str executor-id))        (disruptor/halt-with-interrupt! (:receive-queue executor-data))        (disruptor/halt-with-interrupt! (:batch-transfer-queue executor-data))        (doseq [t threads]          (.interrupt t)          (.join t))                (doseq [user-context (map :user-context (vals task-datas))]          (doseq [hook (.getHooks user-context)]            (.cleanup hook)))        (.disconnect (:storm-cluster-state executor-data))        (when @(:open-or-prepare-was-called? executor-data)          (doseq [obj (map :object (vals task-datas))]            (close-component executor-data obj)))        (log-message "Shut down executor " component-id ":" (pr-str executor-id)))        )))

上述代码中mk-threads用来为spout或者bolt创建thread.

mk-threads使用到了clojure的函数重载机制,借用一下java或c++的术语吧。在clojure中使用defmulti来声明一个重名函数。

mk-threads函数有点长而且逻辑变得更为复杂,还是先从大体上有个概念为好,再去慢慢查看细节。

  • async-loop 线程运行的主函数,类似于pthread_create中的参数start_routine
  • tuple-action-fn spout和bolt都会收到tuple,处理tuple的逻辑不同但有一个同名的处理函数即是tuple-action-fn
  • event-handler 在这个创建的线程中又使用了disruptor模式,disruptor模式一个重要的概念就是要定义相应的event-handler。上面所讲的tupleaction-fn就是在event-handler中被处理。

调用逻辑如下图所示

 

spout

先来看看如果是spout,mk-threads的处理步骤是啥样的,先说这个async-loops

[(async-loop      (fn []        ;; If topology was started in inactive state, don't call (.open spout) until it's activated first.        (while (not @(:storm-active-atom executor-data))          (Thread/sleep 100))                (log-message "Opening spout " component-id ":" (keys task-datas))        (doseq [[task-id task-data] task-datas                :let [^ISpout spout-obj (:object task-data)                      tasks-fn (:tasks-fn task-data)                      send-spout-msg (fn [out-stream-id values message-id out-task-id]                                       (.increment emitted-count)   (let [out-tasks (if out-task-id                     (tasks-fn out-task-id out-stream-id values)                     (tasks-fn out-stream-id values))         rooted? (and message-id has-ackers?)         root-id (if rooted? (MessageId/generateId rand))         out-ids (fast-list-for [t out-tasks] (if rooted? (MessageId/generateId rand)))]     (fast-list-iter [out-task out-tasks id out-ids]                     (let [tuple-id (if rooted?                                      (MessageId/makeRootId root-id id)                                      (MessageId/makeUnanchored))                           out-tuple (TupleImpl. worker-context                                                 values                                                 task-id                                                 out-stream-id                                                 tuple-id)]                       (transfer-fn out-task                                    out-tuple                                    overflow-buffer)                       ))     (if rooted?       (do         (.put pending root-id [task-id                                message-id                                {:stream out-stream-id :values values}                                (if (sampler) (System/currentTimeMillis))])         (task/send-unanchored task-data                               ACKER-INIT-STREAM-ID                               [root-id (bit-xor-vals out-ids) task-id]                               overflow-buffer))       (when message-id         (ack-spout-msg executor-data task-data message-id                        {:stream out-stream-id :values values}                        (if (sampler) 0))))     (or out-tasks [])     ))]]          (builtin-metrics/register-all (:builtin-metrics task-data) storm-conf (:user-context task-data))          (builtin-metrics/register-queue-metrics {:sendqueue (:batch-transfer-queue executor-data)                                                   :receive receive-queue}                                                  storm-conf (:user-context task-data))          (.open spout-obj                 storm-conf                 (:user-context task-data)                 (SpoutOutputCollector.                  (reify ISpoutOutputCollector                    (^List emit [this ^String stream-id ^List tuple ^Object message-id]                      (send-spout-msg stream-id tuple message-id nil)                      )                    (^void emitDirect [this ^int out-task-id ^String stream-id                                       ^List tuple ^Object message-id]                      (send-spout-msg stream-id tuple message-id out-task-id)                      )                    (reportError [this error]                      (report-error error)                      )))))        (reset! open-or-prepare-was-called? true)         (log-message "Opened spout " component-id ":" (keys task-datas))        (setup-metrics! executor-data)                (disruptor/consumer-started! (:receive-queue executor-data))        (fn []          ;; This design requires that spouts be non-blocking          (disruptor/consume-batch receive-queue event-handler)                    ;; try to clear the overflow-buffer          (try-cause            (while (not (.isEmpty overflow-buffer))              (let [[out-task out-tuple] (.peek overflow-buffer)]                (transfer-fn out-task out-tuple false nil)                (.removeFirst overflow-buffer)))          (catch InsufficientCapacityException e            ))                    (let [active? @(:storm-active-atom executor-data)                curr-count (.get emitted-count)]            (if (and (.isEmpty overflow-buffer)                     (or (not max-spout-pending)                         (< (.size pending) max-spout-pending)))              (if active?                (do                  (when-not @last-active                    (reset! last-active true)                    (log-message "Activating spout " component-id ":" (keys task-datas))                    (fast-list-iter [^ISpout spout spouts] (.activate spout)))                                 (fast-list-iter [^ISpout spout spouts] (.nextTuple spout)))                (do                  (when @last-active                    (reset! last-active false)                    (log-message "Deactivating spout " component-id ":" (keys task-datas))                    (fast-list-iter [^ISpout spout spouts] (.deactivate spout)))                  ;; TODO: log that it's getting throttled                  (Time/sleep 100))))            (if (and (= curr-count (.get emitted-count)) active?)              (do (.increment empty-emit-streak)                  (.emptyEmit spout-wait-strategy (.get empty-emit-streak)))              (.set empty-emit-streak 0)              ))                     0))      :kill-fn (:report-error-and-die executor-data)      :factory? true      :thread-name component-id)]))

对于spout来说,如何处理收到的数据呢,这一切都要与disruptor/consume-batch关联起来,注意上述代码红色加亮部分内容。

再看event-handler的定义, event-handler (mk-task-receiver executor-data tuple-action-fn)。上面的调用关系图就可以串起来了。

spout中的tuple-action-fn定义如下,这个tuple-action-fn很重要,如果诸位看官还记得本博前一篇讲解tuple消息发送途径文章内容的话,tuple接收的处理逻辑尽在于此了。

(fn [task-id ^TupleImpl tuple]  [stream-id (.getSourceStreamId tuple)] ondp = stream-id Constants/SYSTEM_TICK_STREAM_ID (.rotate pending) Constants/METRICS_TICK_STREAM_ID (metrics-tick executor-data task-datas tuple) (let [id (.getValue tuple 0)       [stored-task-id spout-id tuple-finished-info start-time-ms] (.remove pending id)]   (when spout-id     (when-not (= stored-task-id task-id)       (throw-runtime "Fatal error, mismatched task ids: " task-id " " stored-task-id))     (let [time-delta (if start-time-ms (time-delta-ms start-time-ms))]       (condp = stream-id         ACKER-ACK-STREAM-ID (ack-spout-msg executor-data (get task-datas task-id)                                            spout-id tuple-finished-info time-delta)         ACKER-FAIL-STREAM-ID (fail-spout-msg executor-data (get task-datas task-id)                                              spout-id tuple-finished-info time-delta)         )))   ;; TODO: on failure, emit tuple to failure stream   ))))

有关bolt相关thread的创建与消息接收处理函数就不一一罗列了,各位自行分析应该没有问题了。

 

转载于:https://www.cnblogs.com/hseagle/p/3449015.html

你可能感兴趣的文章
RN基础
查看>>
304. Range Sum Query 2D - Immutable
查看>>
Redis实现广告缓存、并完善缓存击穿
查看>>
如何绘制最美的鱼骨图?
查看>>
什么是session?什么是cookie?session和cookie有什么区别?
查看>>
javascript引擎执行的过程的理解--语法分析和预编译阶段
查看>>
百度正式发布PaddlePaddle深度强化学习框架PARL
查看>>
迟到但重要的事
查看>>
Node.js 指南(不要阻塞事件循环或工作池)
查看>>
2018年第40周-scala入门-工具使用
查看>>
微信小程序快速入门分享大纲
查看>>
form中只有一个input时自动提交问题
查看>>
面试官:说说快速失败和安全失败是什么
查看>>
node.js中常用的fs文件系统
查看>>
Java抽象类与接口的区别
查看>>
在vue项目中使用vuex
查看>>
服务器从零开始(1D)-user+sudo+vnc
查看>>
一张图让自己搞懂(mēng)原型&原型链
查看>>
Mybatis N+1问题解析
查看>>
前端每日实战:75# 视频演示如何用纯 CSS 创作一支摇曳着烛光的蜡烛
查看>>